Discrimination in metal-ion binding to RNA dinucleotides with a non-bridging oxygen or sulfur in the phosphate diester link.
نویسندگان
چکیده
Replacement of a non-bridging oxygen in the phosphate diester bond by a sulfur has become quite popular in nucleic acid research and is often used as a probe, for example, in ribozymes, where the normally essential Mg(2+) is partly replaced by a thiophilic metal ion to reactivate the system. Despite these widely applied rescue experiments no detailed studies exist quantifying the affinity of metal ions to such terminal sulfur atoms. Therefore, we performed potentiometric pH titrations to determine the binding properties of pUp((S))U(3-) towards Mg(2+), Mn(2+), Zn(2+), Cd(2+), and Pb(2+), and compared these data with those previously obtained for the corresponding pUpU(3-) complexes. The primary binding site in both dinucleotides is the terminal phosphate group. Theoretically, also the formation of 10-membered chelates involving the terminal oxygen or sulfur atoms of the (thio)phosphate bridge is possible with both ligands. The results show that Mg(2+) and Mn(2+) exist as open (op) isomers binding to both dinucleotides only at the terminal phosphate group. Whereas Cd(pUpU)(-) only exists as Cd(pUpU)(-)(op), Cd(pUp((S))U)(-) is present to about 64 % as the S-coordinated macrochelate, Cd(pUp((S))U)(-)(cl/PS). Zn(2+) forms with pUp((S))U(3-) three isomeric species, that is, Zn(pUp((S))U)(-)(op), Zn(pUp((S))U)(-)(cl/PO), and Zn(pUp((S))U)(-)(cl/PS), which occur to about 33, 12 (O-bound), and 55 %, respectively. Pb(2+) forms the 10-membered chelate with both nucleotides involving only the terminal oxygen atoms of the (thio)phosphate bridge, that is, no indication of S binding was discovered in this case. Hence, Zn(2+) and Cd(2+) show pronounced thiophilic properties, whereas Mg(2+), Mn(2+), and Pb(2+) coordinate to the oxygen, macrochelate formation being of relevance with Pb(2+) only.
منابع مشابه
Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV
It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Ther...
متن کاملOral Presentations O11.1 Mapping of the functional phosphate groups in the catalytic core of DNAzyme 10-23
To date, an active structure of the DNAzyme 10–23 in complex with its substrate RNA is not yet known and the details of the mechanism of the RNA cleavage reaction are not fully understood. Much effort has been devoted to the determination of the role of individual nucleosides of the 10-23 catalytic core in the process of catalysis [1]. However, the role of particular phosphates within this core...
متن کاملHuman topoisomerase IIα uses a two-metal-ion mechanism for DNA cleavage
The DNA cleavage reaction of human topoisomerase IIalpha is critical to all of the physiological and pharmacological functions of the protein. While it has long been known that the type II enzyme requires a divalent metal ion in order to cleave DNA, the role of the cation in this process is not known. To resolve this fundamental issue, the present study utilized a series of divalent metal ions ...
متن کاملSolution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
Identification and characterization of a metal ion binding site in an RNA pseudoknot was accomplished using cobalt (III) hexammine, Co(NH3)63+, as a probe for magnesium (II) hexahydrate, Mg(H2O)62+, in nuclear magnetic resonance (NMR) structural studies. The pseudoknot causes efficient -1 ribosomal frameshifting in mouse mammary tumor virus. Divalent metal ions, such as Mg2+, are critical for R...
متن کاملCytotoxic Effect of \" Glycated Albumin-Transition Metal Ion\" on Rat Hepatocyte Suspension
Background: Combination of glycation and oxidation is associated with diabetes mellitus. The aim of this study was to clarify the effect of glycated proteins in presence of transition metal ions on production of reactive oxygen species (ROS) in rat hepatocyte suspension. Methods: Glycated albumin was prepared by incubation of bovine serum albumin with 100 mM glucose in 0.3 M phosphate buffer a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 14 10 شماره
صفحات -
تاریخ انتشار 2008